PHYSIOLOGICAL AND BEHAVIORAL ADAPTATION TO VARYING ENVIRONMENTS: A MATHEMATICAL MODEL.

Publication Year
1988

Type

Journal Article
Abstract

We develop a mathematical model to explore the evolution of habitat selection and physiological adaptation in a heterogeneous environment. The model assumes the following conditions: 1) a panmictic population of infinite size; 2) prereproductive individuals mobile enough to move between patches; 3) alleles at one locus code for absence or presence of adaptation to detrimental patches; 4) alleles at a second locus code for absence or presence of behavior(s) that cause avoidance of the detrimental patches; 5) additive effects of alleles controlling physiology and behavior; 6) frequency-independent fitness. Results of the model indicate that nontrivial, polymorphic equilibria do not exist. The pattern of genotypic fitnesses and the initial allelic frequencies can influence whether the population adapts by physiological or behavioral mechanisms, or by both. Linkage between the two loci can alter the outcome of evolution, given specified genotypic fitness values and initial allelic frequencies.

Journal
Evolution; international journal of organic evolution
Volume
42
Issue
5
Pages
986-994
Date Published
09/1988
ISSN Number
1558-5646
Alternate Journal
Evolution
PMID
28581175